当前位置:2019年全年资料免费公开i > 确界 >

柯西准则如何证确界原理

  设A有上界,我们来证它有上确界。不妨找A的一个上界M。先在集合A中取一点,记为x1,从x1开始以下列方式取点:

  在[x1,M]中取A中的一点记作x2,一定可以做到,因为x1本身是A中的点。如是再三,可取得A中的点列{xn},下面来证明它是柯西序列。

  若从某一项开始数列恒为一个值,则必定是柯西序列。对于非此情况的数列,由取法可知,数列随着n趋近于无穷,对于任意的r,从某项xk起之后各项(不只是相邻项)之间的差值都会小于r,所以点列{xn}是柯西序列。(注意,如果在xk之后有有限个差值大于r,则把最后的一项定为xk;若有无限项差值大于r,那么若干个r就比[x1,M]还长,不可能出现。)

  由此可知,无论何种情况,点列{xn}都是柯西序列,所以收敛到一点c。从点列的选法来看,c是A的一个上界,因为它大于等于A中所有的元素。同时,对于任意的e0,由收敛序列的性质可知存在A中的一点xn,使得c+exnc-e

http://bylaurene.com/quejie/585.html
点击次数:??更新时间2019-08-09??【打印此页】??【关闭
  • Copyright © 2002-2017 DEDECMS. 织梦科技 版权所有  
  • 点击这里给我发消息
在线交流 
客服咨询
【我们的专业】
【效果的保证】
【百度百科】
【因为有我】
【所以精彩】